Bioinorganic Chemistry and Applications (Jan 2018)

Coordination Behavior of Ni2+, Cu2+, and Zn2+ in Tetrahedral 1-Methylimidazole Complexes: A DFT/CSD Study

  • Samuel Tetteh

DOI
https://doi.org/10.1155/2018/3157969
Journal volume & issue
Vol. 2018

Abstract

Read online

The interaction between nickel (Ni2+), copper (Cu2+), and zinc (Zn2+) ions and 1-methylimidazole has been studied by exploring the geometries of eleven crystal structures in the Cambridge Structural Database (CSD). The coordination behavior of the respective ions was further investigated by means of density functional theory (DFT) methods. The gas-phase complexes were fully optimized using B3LYP/GENECP functionals with 6-31G∗ and LANL2DZ basis sets. The Ni2+ and Cu2+ complexes show distorted tetrahedral geometries around the central ions, with Zn2+ being a perfect tetrahedron. Natural bond orbital (NBO) analysis and natural population analysis (NPA) show substantial reduction in the formal charge on the respective ions. The interaction between metal d-orbitals (donor) and ligand orbitals (acceptor) was also explored using second-order perturbation of the Fock matrix. These interactions followed the order Ni2+ > Cu2+ > Zn2+ with Zn2+ having the least interaction with the ligand orbitals. Examination of the frontier orbitals shows the stability of the complexes in the order Ni2+ > Cu2+ < Zn2+ which is consistent with the Irving–Williams series.