Schizophrenia (Mar 2024)

Reduction of N-acetyl aspartate (NAA) in association with relapse in early-stage psychosis: a 7-Tesla MRS study

  • Marina Mihaljevic,
  • Yu-Ho Chang,
  • Ashley M. Witmer,
  • Jennifer M. Coughlin,
  • David J. Schretlen,
  • Peter B. Barker,
  • Kun Yang,
  • Akira Sawa

DOI
https://doi.org/10.1038/s41537-024-00451-7
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 5

Abstract

Read online

Abstract Understanding the biological underpinning of relapse could improve the outcomes of patients with psychosis. Relapse is elicited by multiple reasons/triggers, but the consequence frequently accompanies deteriorations of brain function, leading to poor prognosis. Structural brain imaging studies have recently been pioneered to address this question, but a lack of molecular investigations is a knowledge gap. Following a criterion used for recent publications by others, we defined the experiences of relapse by hospitalization(s) due to psychotic exacerbation. We hypothesized that relapse-associated molecules might be underscored from the neurometabolites whose levels have been different between overall patients with early-stage psychosis and healthy subjects in our previous report. In the present study, we observed a significant decrease in the levels of N-acetyl aspartate in the anterior cingulate cortex and thalamus in patients who experienced relapse compared to patients who did not. Altogether, decreased N-acetyl aspartate levels may indicate relapse-associated deterioration of neuronal networks in patients.