FEBS Open Bio (Jan 2014)

Characterization of the shrimp neuroparsin (MeNPLP): RNAi silencing resulted in inhibition of vitellogenesis

  • Shi Ping Yang,
  • Jian-Guo He,
  • Cheng Bo Sun,
  • Siuming Francis Chan

DOI
https://doi.org/10.1016/j.fob.2014.09.005
Journal volume & issue
Vol. 4, no. C
pp. 976 – 986

Abstract

Read online

The full-length Metapenaeus ensis neuroparsin (MeNPLP) cDNA was cloned which encodes a shrimp protein homologous to the insect neuroparsin and vertebrate insulin-like growth factor binding protein (IGFBP). MeNPLP cDNA is 1389 bp in length and the longest open reading frame is 303 bp in length. The first 27 aa are predicted to be the signal peptide and aa 28–101 is the mature peptide with an estimated molecular weight of 7.83 kDa and pI of 5. It shows high amino acid sequence similarity (42–68%) to the neuroparsin of insects and N-terminal end of the IGFBP of vertebrates. The cysteine residues in MeNPLP responsible for disulfide bond formation are conserved as in other neuroparsin-like proteins. The expression level of MeNPLP is the highest in the hepatopancreas, followed by the nerve cord, brain, heart, ovary, and muscle. However, it was not expressed in the testis. Using an insect neuroparsin antibody, MeNPLP could only be detected in the hepatopancreatic tubules, suggesting that MeNPLP may be a secretary product. Although MeNPLP expression was stimulated in the ovary, it was inhibited in the hepatopancreas after treatment with neurotransmitter serotonin (5-HT). In vivo gene silencing of MeNPLP could cause a significant decrease of vitellogenin transcript level in the hepatopancreas and ovary. As a result, a corresponding decrease in vitellogenin protein level was observed in the hemolymph and ovary. In conclusion, this study has provided the first evidence that MeNPLP is involved in the initial stage of ovary maturation in shrimp.

Keywords