Frontiers in Computer Science (Jul 2024)
Mayfly optimistic hyperelliptic curve cryptosystem
Abstract
Various applications use asymmetric cryptography to secure communications between both parties, and it raises the main issue of generating vast amounts of computation and storage. Thus, elliptic curve cryptography (ECC) is a methodology that emerged to overcome this issue using its low computation and generation of small keys with its strong encryption strategy. ECC is becoming mandatory and used mostly for public key encryption protocols. ECC has expanded cumulative acceptance in practice due to the reduced bit magnitude of operands compared to RSA for safety level. Previously, protocols designed for ECC suggested calculation of scalar development and it was accomplished in finite fields as projective, affine, and Jacobian simulations of coordinates. Arithmetic operations in a limited area establish the core benefits of the ECC algorithm. Even though ECC generated an issue of complex key generation using its curve formation, to overcome this issue a hyperelliptic curve cryptosystems (HECC) is proposed in this study. HECC perform ECC in the Public Key Cryptography (PKC) domain. This study presented an optimization-based key generation and made a random selection of integers for encrypting the message. Selecting a prime number as the private key and multiplying it to the encrypted message to generate a public key is done. This encrypted message is mapped to the curve to check whether it satisfies the curve equation or not. Once an encrypted message is obtained, it is then sent to a second party for pursuing the message. On the side of the second party, a reverse process called decryption takes place. Thus, a secured transmission of data communication takes place. Implementing this algorithm in MATLAB resulted in 94% accuracy and an error of 6%, which was a higher performance ratio than previous methods.
Keywords