Pathogens (Oct 2022)
The Influence of the Degree of Thermal Inactivation of Probiotic Lactic Acid Bacteria and Their Postbiotics on Aggregation and Adhesion Inhibition of Selected Pathogens
Abstract
The study aimed to evaluate the effect of thermal inactivation of potentially probiotic lactic acid bacteria (LAB) strains isolated from food on their ability to compete with pathogenic microorganisms. Five strains of LAB, previously isolated from food and characterized, one commercial reference strain of Lactiplantibacillus plantarum 299v, and two indicator strains of Staphylococcus aureus 25923 and Listeriamonocytogenes 15313 were used in the study. The experiment consisted in applying a stress factor (high temperature: 80 °C, at a different time: 5, 15, and 30 min) to the tested LAB cells to investigate the in vitro properties such as hydrophobicity abilities (against p-xylene and n-hexadecane), auto-aggregation, co-aggregation with pathogens, and inhibition of pathogens adhesion to the porcine gastric mucin. The bacterial strains showed various hydrophobicity to p-xylene (36–73%) and n-hexadecane (11–25%). The affinity for solvents expanded with increasing thermal inactivation time. All LAB isolates were able to auto-aggregate (ranging from 17 to 49%). Bacterial strains subjected to 5 and 15 min of thermal inactivation had the highest auto-aggregation ability in comparison to viable and heat-killed cells for 30 min. The LAB strains co-aggregated with pathogens to different degrees; among them, the highest scores of co-aggregation were observed for L. monocytogenes, reaching 27% (with 15 min of heat-killed LAB cells). All LAB strains reduced the adherence of pathogenic bacteria in the competition test, moreover, heat-killed cells (especially 15 min inactivated) were more efficient than viable cells. The properties of selected LAB strains as moderately heat-stressed forms analyzed in the study increased the prevention of colonization and elimination of pathogenic bacteria in the in vitro model of gastrointestinal tract. The thermal inactivation process may therefore preserve and modifies some characteristics of bacterial cells.
Keywords