Nature Communications (Oct 2021)

Orchestrating and sharing large multimodal data for transparent and reproducible research

  • Anthony Mammoliti,
  • Petr Smirnov,
  • Minoru Nakano,
  • Zhaleh Safikhani,
  • Christopher Eeles,
  • Heewon Seo,
  • Sisira Kadambat Nair,
  • Arvind S. Mer,
  • Ian Smith,
  • Chantal Ho,
  • Gangesh Beri,
  • Rebecca Kusko,
  • Massive Analysis Quality Control (MAQC) Society Board of Directors,
  • Eva Lin,
  • Yihong Yu,
  • Scott Martin,
  • Marc Hafner,
  • Benjamin Haibe-Kains

DOI
https://doi.org/10.1038/s41467-021-25974-w
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

It is no secret that a significant part of scientific research is difficult to reproduce. Here, the authors present a cloud-computing platform called ORCESTRA that facilitates reproducible processing of multimodal biomedical data using customizable pipelines and well-documented data objects.