Molecules (Nov 2022)
Wound Healing Potential of an Oleoresin Essential Oil Chemotype from <i>Canarium schweinfurthii</i> Engl.
Abstract
This study was conducted to investigate the chemical composition of essential oil (EO) extracted from an oleoresin of Canarium schweinfurthii widespread in the Gabonese tropical forest. A great variability in the chemical composition of EO was observed, among which a chemical profile rich in terpinolene and α-phellandrene (31.2 and 21.8%, respectively), was found and tested as a natural active ingredient for topical applications. After the evaluation of eye and skin irritancy and sensitization potentials of EO on in vitro and in chemico models, the in vitro modulating potential on a model of wound re-epithelialization was assessed. The terpinolene and α-phellandrene-rich chemotype have been proven to accelerate wound healing in a dose-dependent manner (concentration range from 1.8 to 9.0 μg/mL). In addition, the ability of this EO to modulate the pro-inflammatory response in human keratinocytes stimulated by UVB was observed in vitro by the reduction in levels of interleukin 6 (IL-6) and tumour necrosis factor-alpha (TNF-α), suggesting a possible implication during the inflammation phase of wound healing. Despite the high variability in EO composition, a method of solid-phase microextraction (SPME) of the oleoresin headspace is proposed for the in situ identification of the terpinolene and α-phellandrene-rich chemotype instead of conducting hydrodistillation. These results offer interesting perspectives for the development of innovative natural ingredients for the topical route, ingredients obtained in an eco-responsible and non-destructive way.
Keywords