Atmosphere (Sep 2024)
Effects of Wildfire and Logging on Soil CO<sub>2</sub> Efflux in Scots Pine Forests of Siberia
Abstract
Wildfires and logging play an important role in regulating soil carbon fluxes in forest ecosystems. In Siberia, large areas are disturbed by fires and logging annually. Climate change and increasing anthropogenic pressure have resulted in the expansion of disturbed areas in recent decades. However, few studies have focused on the effects of these disturbances on soil CO2 efflux in the vast Siberian areas. The objective of our research was to evaluate differences in CO2 efflux from soils to the atmosphere between undisturbed sites and sites affected by wildfire and logging in Scots pine forests of southern Siberia. We examined 35 plots (undisturbed forest, burned forest, logged plots, and logged and burned plots) on six study sites in the Angara region and four sites in the Zabaikal region. Soil CO2 efflux was measured using an LI-800 infrared gas analyzer. We found that both fire and logging significantly reduced soil efflux in the first years after a disturbance due to a reduction in vegetation biomass and consumption of the forest floor. We found a substantially lower CO2 efflux in forests burned by high-severity fires (74% less compared to undisturbed forests) than in forests burned by moderate-severity (60% less) and low-severity (37% less) fires. Clearcut logging resulted in 6–60% lower soil CO2 efflux at most study sites, while multiple disturbances (logging and fire) had 48–94% lower efflux. The soil efflux rate increased exponentially with increasing soil temperature in undisturbed Scots pine forests (p p p p 2 efflux across all the plots studied. Our results demonstrate the importance of disturbance factors in the assessment of regional and global carbon fluxes. The drastic changes in CO2 flux rates following fire and logging should be incorporated into carbon balance models to improve their reliability in a changing environment.
Keywords