Pharmacology Research & Perspectives (Aug 2024)

Determination of a vancomycin nephrotoxicity threshold and assessment of target attainment in hematology patients

  • Sherilyn Wong,
  • Philip R. Selby,
  • Stephanie E. Reuter

DOI
https://doi.org/10.1002/prp2.1231
Journal volume & issue
Vol. 12, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract An area‐under‐the‐curve (AUC24)‐based approach is recommended to guide vancomycin therapeutic drug monitoring (TDM), yet trough concentrations are still commonly used despite associated risks. A definitive toxicity target is lacking, which is important for hematology patients who have a higher risk of nephrotoxicity. The aims were to (1) assess the impact of trough‐based TDM on acute kidney injury (AKI) incidence, (2) establish a vancomycin nephrotoxicity threshold, and (3) evaluate the proportion of hematology patients achieving vancomycin therapeutic targets. Retrospective data was collected from 100 adult patients with a hematological malignancy or aplastic anemia who received vancomycin between April 2020 and January 2021. AKI occurrence was determined based on serum creatinine concentrations, and individual pharmacokinetic parameters were estimated using a Bayesian approach. Receiver operating characteristic (ROC) curve analysis was performed to assess the ability of pharmacokinetic indices to predict AKI occurrence. The proportion of patients who achieved target vancomycin exposure was evaluated based on an AUC24/MIC ≥400 and the determined toxicity threshold. The incidence of AKI was 37%. ROC curve analysis indicated a maximum AUC24 of 644 mg.h/L over the treatment period was an important predictor of AKI. By Day 4 of treatment, 29% of treatment courses had supratherapeutic vancomycin exposure, with only 62% of courses achieving AUC24 targets. The identified toxicity threshold supports an AUC24 target range of 400–650 mg.h/L, assuming an MIC of 1 mg/L, to optimize vancomycin efficacy and minimize toxicity. This study highlights high rates of AKI in this population and emphasizes the importance of transitioning from trough‐based TDM to an AUC‐based approach to improve clinical outcomes.

Keywords