Aerospace (May 2019)
Unsteady Flow Structures within a Turbine Rim Seal Cavity in the Presence of Purge Flow—An Experimental and Computational Unsteady Aerodynamics Investigation
Abstract
Flow within the space between the rotor and stator of a turbine disk, and an area referred to as the rim seal cavity, develops azimuthal velocity component from the rotor disk. The fluid within develops unsteady structures that move at a fraction of the rotor speed. A test is designed to measure the number of unsteady structures and the rotational speed at which they are moving in the rim seal cavity of an experimental research rig. Data manipulation was developed to extract the speed, and the numbers of structures present using two fast-response aerodynamic probes measuring static pressure on the surface of the nozzle guide vane (NGV)-side rim seal cavity. A computational study is done to compare measured results to a transient unsteady Reynolds-averaged Navier−Stokes (URANS). The computational simulation consists of eight vanes and ten blades, carefully picked to reduce the error caused by blade vane pitch mismatch and to allow for the structures to develop correctly, and the rim seal cavity to measure the speed and number of the structures. The experimental results found 15 structures moving at 77.5% of the rotor speed, and the computational study suggested 14.5 structures are moving at 81.7% rotor speed. The agreement represents the first known test of its kind in a large-scale turbine test rig and the first known “good” agreement between computational and experimental work.
Keywords