Micromachines (Jan 2024)

A Dual-Mode Pressure and Temperature Sensor

  • Jin Chai,
  • Xin Wang,
  • Xuan Li,
  • Guirong Wu,
  • Yunlong Zhao,
  • Xueli Nan,
  • Chenyang Xue,
  • Libo Gao,
  • Gaofeng Zheng

DOI
https://doi.org/10.3390/mi15020179
Journal volume & issue
Vol. 15, no. 2
p. 179

Abstract

Read online

The emerging field of flexible tactile sensing systems, equipped with multi-physical tactile sensing capabilities, holds vast potential across diverse domains such as medical monitoring, robotics, and human–computer interaction. In response to the prevailing challenges associated with the limited integration and sensitivity of flexible tactile sensors, this paper introduces a versatile tactile sensing system capable of concurrently monitoring temperature and pressure. The temperature sensor employs carbon nanotube/graphene conductive paste as its sensitive material, while the pressure sensor integrates an ionic gel containing boron nitride as its sensitive layer. Through the application of cost-effective screen printing technology, we have successfully manufactured a flexible dual-mode sensor with exceptional performance, featuring high sensitivity (804.27 kPa−1), a broad response range (50 kPa), rapid response time (17 ms), and relaxation time (34 ms), alongside exceptional durability over 5000 cycles. Furthermore, the resistance temperature coefficient of the sensor within the temperature range of 12.5 °C to 93.7 °C is −0.17% °C−1. The designed flexible dual-mode tactile sensing system enables the real-time detection of pressure and temperature information, presenting an innovative approach to electronic skin with multi-physical tactile sensing capabilities.

Keywords