Cells (Nov 2021)

MicroRNA Bta-miR-24-3p Suppressed Galectin-9 Expression through TLR4/NF-ĸB Signaling Pathway in LPS-Stimulated Bovine Endometrial Epithelial Cells

  • Ayodele Olaolu Oladejo,
  • Yajuan Li,
  • Wenxiang Shen,
  • Bereket Habte Imam,
  • Xiaohu Wu,
  • Jie Yang,
  • Xiaoyu Ma,
  • Yanan Lv,
  • Wei Jiang,
  • Xuezhi Ding,
  • Shengyi Wang,
  • Zuoting Yan

DOI
https://doi.org/10.3390/cells10123299
Journal volume & issue
Vol. 10, no. 12
p. 3299

Abstract

Read online

Endometritis is a major infectious disease affecting dairy development. MicroRNAs are recognized as critical regulators of the innate immune response. However, the role and mechanism of Bta-miR-24-3p in the development of endometritis are still unclear. This study aimed to investigate the effect of Bta-miR-24-3p on the inflammatory response triggered by lipopolysaccharide (LPS) and to clarify the possible mechanism. LPS-treated bovine endometrial epithelial cells (BEECs) were cultured to investigate the role of Bta-miR-24-3p. The expression levels of Bta-miR-24-3p were downregulated, and galectin-9 (LGALS9) were measured by quantitative real-time polymerase chain reaction. The LPS-induced inflammatory response was assessed by the elevated secretion of inflammatory cytokines measured by using enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction. Activation of nuclear factor-κB (NF-κB) and TLR4 pathway was assessed by Western blot. The interaction between Bta-miR-24-3p and LGALS9 was validated by bioinformatics analysis and a luciferase reporter assay. LPS-induction in BEECs with Bta-miR-24-3p was overexpressed leads inhibition of pro-inflammatory cytokines, LGALS9 expression, and TLR4/NF-ĸB pathway deactivation. Knockdown of LGALS9 inhibited the LPS-induced inflammatory response in BEECs. LGALS9 was validated as a target of Bta-miR-24-3p. Cloned overexpression of LGALS9 failed to alter the effect of Bta-miR-24-3p on the inflammatory response in BEECs. Overall, Bta-miR-24-3p attenuated the LPS-induced inflammatory response via targeting LGALS9. The immunotherapeutic stabilisation of Bta-miR-24-3p could give a therapeutic option for endometritis and other disorders commonly associated with endometritis, suggesting a novel avenue for endometritis treatment.

Keywords