Empirical Musicology Review (Apr 2011)
Using Automated Rhyme Detection to Characterize Rhyming Style in Rap Music
Abstract
Imperfect and internal rhymes are two important features in rap music previously ignored in the music information retrieval literature. We developed a method of scoring potential rhymes using a probabilistic model based on phoneme frequencies in rap lyrics. We used this scoring scheme to automatically identify internal and line-final rhymes in song lyrics and demonstrated the performance of this method compared to rules-based models. We then calculated higher-level rhyme features and used them to compare rhyming styles in song lyrics from different genres, and for different rap artists. We found that these detected features corresponded to real- world descriptions of rhyming style and were strongly characteristic of different rappers, resulting in potential applications to style-based comparison, music recommendation, and authorship identification.
Keywords