Bioengineering (Jun 2024)

Multi-Scale Digital Pathology Patch-Level Prostate Cancer Grading Using Deep Learning: Use Case Evaluation of DiagSet Dataset

  • Tanaya Kondejkar,
  • Salah Mohammed Awad Al-Heejawi,
  • Anne Breggia,
  • Bilal Ahmad,
  • Robert Christman,
  • Stephen T. Ryan,
  • Saeed Amal

DOI
https://doi.org/10.3390/bioengineering11060624
Journal volume & issue
Vol. 11, no. 6
p. 624

Abstract

Read online

Prostate cancer remains a prevalent health concern, emphasizing the critical need for early diagnosis and precise treatment strategies to mitigate mortality rates. The accurate prediction of cancer grade is paramount for timely interventions. This paper introduces an approach to prostate cancer grading, framing it as a classification problem. Leveraging ResNet models on multi-scale patch-level digital pathology and the Diagset dataset, the proposed method demonstrates notable success, achieving an accuracy of 0.999 in identifying clinically significant prostate cancer. The study contributes to the evolving landscape of cancer diagnostics, offering a promising avenue for improved grading accuracy and, consequently, more effective treatment planning. By integrating innovative deep learning techniques with comprehensive datasets, our approach represents a step forward in the pursuit of personalized and targeted cancer care.

Keywords