Foods (Aug 2023)

Evaluation of Precision and Sensitivity of Back Extrusion Test for Measuring Textural Qualities of Cooked Germinated Brown Rice in Production Process

  • Kannapot Kaewsorn,
  • Pisut Maichoon,
  • Pimpen Pornchaloempong,
  • Warawut Krusong,
  • Panmanas Sirisomboon,
  • Munehiro Tanaka,
  • Takayuki Kojima

DOI
https://doi.org/10.3390/foods12163090
Journal volume & issue
Vol. 12, no. 16
p. 3090

Abstract

Read online

The textural qualities of cooked rice may be understood as a dominant property and indicator of eating quality. In this study, we evaluated the precision and sensitivity of a back extrusion (BE) test for the texture of cooked germinated brown rice (GBR) in a production process. BE testing of the textural properties of cooked GBR rice showed a high precision of measurement in hardness, toughness and stickiness tests which indicated by the repeatability and reproductivity test but the sensitivity indicated by coefficient of variation of the texture properties. The findings of our study of the effects on cooked GBR texture of different soaking and incubation durations in the production of Khao Dawk Mali 105 (KDML 105) GBR, as measured by BE testing, confirmed that our original protocol for evaluation of the precision and sensitivity of this texture measurement method. The coefficients of determination (R2) of hardness, toughness and stickiness tests and the incubation time at after 48 hours of soaking were 0.82, 0.81 and 0.64, respectively. The repeatability and reproducibility of reliable measurements, which have a low standard deviation of the greatest difference between replicates, are considered to indicate high precision. A high coefficient of variation where relatively wide variations in the absolute value of the property can be detected indicates high sensitivity when small resolutions can be detected, and vice versa. The sensitivity of the BE tests for stickiness, toughness and hardness all ranked higher, in that order, than the sensitivity of the method for adhesiveness, which ranked lowest. The coefficients of variation of these texture parameters were 31.26, 20.59, 19.41 and 18.72, respectively. However, the correlation coefficients among the texture properties obtained by BE testing were not related to the precision or sensitivity of the test. By obtaining these results, we verified that our original protocol for the determination of the precision and sensitivity of food texture measurements which was successfully used for GBR texture measurement.

Keywords