Radiation (May 2024)

Mini-Beam Spatially Fractionated Radiation Therapy for Whole-Brain Re-Irradiation—A Pilot Toxicity Study in a Healthy Mouse Model

  • Hong Yuan,
  • Judith N. Rivera,
  • Jonathan E. Frank,
  • Jonathan Nagel,
  • Colette Shen,
  • Sha X. Chang

DOI
https://doi.org/10.3390/radiation4020010
Journal volume & issue
Vol. 4, no. 2
pp. 125 – 141

Abstract

Read online

For patients with recurrent brain metastases, there is an urgent need for a more effective and less toxic treatment approach. Accumulating evidence has shown that spatially fractionated radiation therapy (SFRT) is able to provide a significantly higher therapeutic ratio with lower toxicity compared to conventional radiation using a uniform dose. The purpose of this study was to explore the potential low toxicity benefit of mini-beam radiotherapy (MBRT), a form of SFRT, for whole-brain re-irradiation in a healthy mouse model. Animals first received an initial 25 Gy of uniform whole-brain irradiation. Five weeks later, they were randomized into three groups to receive three different re-irradiation treatments as follows: (1) uniform irradiation at 25 Gy; (2) MBRT at a 25 Gy volume-averaged dose (106.1/8.8 Gy for peak/valley dose, 25 Gy-MBRT); and (3) MBRT at a 43 Gy volume-averaged dose (182.5/15.1 Gy for peak/valley dose, 43 Gy-MBRT). Animal survival and changes in body weight were monitored for signs of toxicity. Brains were harvested at 5 weeks after re-irradiation for histologic evaluation and immunostaining. The study showed that 25 Gy-MBRT resulted in significantly less body weight loss than 25 Gy uniform irradiation in whole-brain re-irradiation. Mice in the 25 Gy-MBRT group had a higher level of CD11b-stained microglia but also maintained more Ki67-stained proliferative progenitor cells in the brain compared to mice in the uniform irradiation group. However, the high-dose 43 Gy-MBRT group showed severe radiation toxicity compared to the low-dose 25 Gy-MBRT and uniform irradiation groups, indicating dose-dependent toxicity. Our study demonstrates that MBRT at an appropriate dose level has the potential to provide less toxic whole-brain re-irradiation. Future studies investigating the use of MBRT for brain metastases are warranted.

Keywords