Sensors (Aug 2023)

Analysis and Implementation of Controlled Semiconductor Switch for Ultra-Wideband Radar Sensor Applications

  • Patrik Jurik,
  • Miroslav Sokol,
  • Pavol Galajda,
  • Milos Drutarovsky

DOI
https://doi.org/10.3390/s23177392
Journal volume & issue
Vol. 23, no. 17
p. 7392

Abstract

Read online

All ultra-wideband (UWB) sensor applications require hardware designed directly for their specific application. The switching of broadband radio frequency and microwave signals is an integral part of almost every piece of high-frequency equipment, whether in commercial operation or laboratory conditions. The trend of integrating various circuit structures and systems on a chip (SoC) or in a single package (SiP) is also related to the need to design these integrated switches for various measuring devices and instruments in laboratories, paradoxically for their further development. Another possible use is switching high-frequency signals in telecommunications devices, whether mobile or fixed networks, for example, for switching signals from several antennas. Based on these requirements, a high-frequency semiconductor integrated switch with NMOS transistors was designed. With these transistors, it is possible to achieve higher integration than with bipolar ones. Even though MOSFET transistors have worse frequency characteristics, we can compensate them to some extent with the precise design of the circuit and layout of the chip. This article describes the analysis and design of a high-frequency semiconductor integrated switch for UWB applications consisting of three series-parallel switches controlled by CMOS logic signals. They are primarily intended for UWB sensor systems, e.g., when switching and configuring the antenna MIMO system or when switching calibration tools. The design of the switch was implemented in low-cost 0.35 µm SiGe BiCMOS technology with an emphasis on the smallest possible attenuation and the largest possible bandwidth and isolation. The reason for choosing this technology was also that other circuit structures of UWB systems were realized in this technology. Through the simulations, individual parameters of the circuit were simulated, the layout of the chip was also created, and the parameters of the circuit were simulated with the parasitic extraction and the inclusion of parasitic elements (post-layout simulations). Subsequently, the chip was manufactured and its parameters were measured and evaluated. Based on these measurements, the designed and fabricated UWB switch was found to have the following parameters: a supply current of 2 mA at 3.3 V, a bandwidth of 6 GHz, an insertion loss (at 1 GHz) of −2.2 dB, and isolation (at 1 GHz) of −33 dB, which satisfy the requirements for our UWB sensor applications.

Keywords