Physical Review Physics Education Research (Nov 2016)

Dissociative conceptual and quantitative problem solving outcomes across interactive engagement and traditional format introductory physics

  • Mark A. McDaniel,
  • Siera M. Stoen,
  • Regina F. Frey,
  • Zachary E. Markow,
  • K. Mairin Hynes,
  • Jiuqing Zhao,
  • Michael J. Cahill

DOI
https://doi.org/10.1103/PhysRevPhysEducRes.12.020141
Journal volume & issue
Vol. 12, no. 2
p. 020141

Abstract

Read online Read online

The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.