Algorithms for Molecular Biology (Jun 2021)
The Bourque distances for mutation trees of cancers
Abstract
Abstract Background Mutation trees are rooted trees in which nodes are of arbitrary degree and labeled with a mutation set. These trees, also referred to as clonal trees, are used in computational oncology to represent the mutational history of tumours. Classical tree metrics such as the popular Robinson–Foulds distance are of limited use for the comparison of mutation trees. One reason is that mutation trees inferred with different methods or for different patients often contain different sets of mutation labels. Results We generalize the Robinson–Foulds distance into a set of distance metrics called Bourque distances for comparing mutation trees. We show the basic version of the Bourque distance for mutation trees can be computed in linear time. We also make a connection between the Robinson–Foulds distance and the nearest neighbor interchange distance.
Keywords