Chemosensors (Jun 2021)
A Study on the Combination of Enzyme Stabilizers and Low Temperatures in the Long-Term Storage of Glutamate Biosensor
Abstract
The importance of physiological glutamate has been widely demonstrated in cognitive and memory processes, as well as in neurotransmission. The involvement of physiological glutamate in several pathologies has also been established. Therefore, analytical devices for studying variations in physiological glutamate are of fundamental importance, particularly in preclinical studies. The necessary knowledge to develop and characterize biosensors for glutamate detection is often restricted to only a few research groups. However, many more groups have sought to implant such analytical devices to study the glutamatergic system in vivo. On this basis, a series of studies was undertaken to explore the medium-term storage of biosensors, thereby allowing their usage results to be differentiated from their construction and characterization processes to facilitate the wider diffusion and use of such sensors. Therefore, it has become vital to determine the best storage conditions to extend the life and functionality of these biosensors, especially due to the diachronic instability of the enzyme present on the surface. In the present study, we analyzed the impact of glycols, such as glycerol and triethylene glycol, as enzyme stabilizers coupled with long-term storage at low temperatures (−20 and −80 °C) on biosensor performance. The biosensors were observed for 5 months and evaluated for their enzymatic activity by measuring the VMAX(app) and KM(app). The analytical features were also evaluated in terms of the Linear Region Slope, which is one the most important parameters for indicating the efficiency and the sensitivity of biosensors. Interestingly, both glycols proved to be capable of increasing enzymatic activity and maintaining good biosensor efficiency over time. Moreover, the combination with low-temperature storage highlighted the different behaviors of the two glycols. In particular, glycerol was more effective in stabilizing the enzyme and maintaining analytical performance when the biosensors were stored at −20 °C. Instead, triethylene glycol performed the same function as glycerol but when the biosensors were stored at −80 °C.
Keywords