Journal of Engineering Science and Technology Review (Feb 2016)
Feasibility Study on Steam and Gas Push with Dual Horizontal Wells in a Moderate-Depth Heavy Oil Reservoir
Abstract
Non-condensable gas (NCG) with steam co-injection makes steam assisted gravity drainage less energy-intensive as well as reduces greenhouse gas emission and water consumption. Numerous studies have shown that the technology called steam and gas push (SAGP) is feasible for heavy oil and bitumen. However, most of these studies have focused on shallow heavy oil reservoirs and only a few works have investigated moderate-depth heavy oil reservoirs. In this study, laboratory experiments and numerical simulations were conducted to study shape change, steam chamber expansion, and temperature change after co-injecting NCG with steam into an actual moderate-depth heavy oil reservoir. Results showed that after co-injecting NCG with steam, the transverse expansion rate of the steam chamber accelerated, vertical expansion slowed down, thermal utilization increased, and oil–steam ratio improved. In addition, the injection parameters of SAGP were also optimized via numerical simulation, which indicated that SAGP could effectively improve development effect and recovery for moderate-depth heavy oil reservoirs.