Biology (Jun 2023)
Proteomic and Global DNA Methylation Modulation in Lipid Metabolism Disorders with a Marine-Derived Bioproduct
Abstract
Dyslipidemia is a significant risk factor for cardiovascular disease and stroke. Our recent findings showed that RCI-1502, a bioproduct derived from the muscle of the European S. pilchardus, has lipid-lowering effects in the liver and heart in high-fat diet (HFD) fed mice. In the present follow-up study, we investigated the therapeutic potential of RCI-1502 on gene expression and DNA methylation in HFD-fed mice and in patients with dyslipidemia. Using LC-MS/MS, we identified 75 proteins in RCI-1502 that are primarily involved in binding and catalytic activity and which regulate pathways implicated in cardiovascular diseases. In HFD-fed mice, RCI-1502 treatment significantly reduced the expression of cardiovascular disease-related genes, including vascular cell adhesion molecule and angiotensin. RCI-1502 also decreased DNA methylation levels, which were elevated in HFD-fed mice, to levels similar to those in control animals. Furthermore, peripheral blood leukocyte DNA from dyslipidemic patients exhibited higher DNA methylation levels than healthy individuals, suggesting a potential association with cardiovascular risk. Serum analysis also revealed that RCI-1502 treatment regulated cholesterol and triglyceride levels in patients with dyslipidemia. Our findings appear to suggest that RCI-1502 is an epigenetic modulator for the treatment of cardiovascular diseases, specifically in individuals with dyslipidemia.
Keywords