International Journal of Medical Microbiology (Oct 2021)

Cutibacterium acnes phylogenetic type IC and II isolated from patients with non-acne diseases exhibit high-level biofilm formation

  • Keisuke Nakase,
  • Juri Koizumi,
  • Ren Midorikawa,
  • Kento Yamasaki,
  • Miho Tsutsui,
  • Sae Aoki,
  • Yutaka Nasu,
  • Yuji Hirai,
  • Hidemasa Nakaminami,
  • Norihisa Noguchi

Journal volume & issue
Vol. 311, no. 7
p. 151538

Abstract

Read online

Cutibacterium (formerly Propionibacterium) acnes is an important for not only exacerbating factor of acne vulgaris but also pathogen of surgical site infections (SSIs) in orthopedics and plastic surgery. Although biofilm-forming (BF) C. acnes are associated with intractable SSI, characteristics of these strains were still unknown. Here, we explored detailed molecular epidemiological features of BF C. acnes isolated as causative pathogen of infectious diseases. Phylogenetic types of 205 C. acnes strains isolated between 2013 and 2018 from 18 clinical departments of a university hospital in Japan were determined by single-locus sequence type (SLST). Clade H (traditional type IC) and K (type II) which are less relevant with healthy skin and acne vulgaris, were detected in 26.8% (55/205) and 16.1% (33/205) of the strains, respectively. The incidence of them was significantly higher than that of acne patients (H and K, each 2.9%, P < 0.05). In addition, SLST distribution of C. acnes strains differed by each department and isolation site. When biofilm formation was quantified, 51 strains (24.9%) were defined as high-BF strains. Notably, most high-BF strains were classified into the strains of clade H (56.4%, 31/55) and clade K (54.4%, 18/33), and these strains were frequently found in the strains isolated from patients of medical emergency center and plastic surgery. Similarly, high-BF strains were frequently found among the isolates from blood (35.7%) and catheters (30.0%), with a high proportion belonging to clades H and K. Compared to C. acnes strains isolated from acne patients, antimicrobial-resistant strains were less identified in non-acne patients. Our findings showed that pathogenicity of C. acnes strains differs by their phylogenetic types. Furthermore, we showed clade H and K have the ability of high biofilm formation and suggest that these strains have potential to become a risk factor for SSI.

Keywords