Cell Death Discovery (Aug 2023)

Characterization of circSEC11A as a novel regulator of Iodine-125 radioactive seed-induced anticancer effects in hepatocellular carcinoma via targeting ZHX2/GADD34 axis

  • Dong Li,
  • Wujie Wang,
  • Bin Liu,
  • Die Jin,
  • Yang Wang,
  • Guanghui He,
  • Lei Guo,
  • Wen Liu,
  • Yuliang Li

DOI
https://doi.org/10.1038/s41420-023-01593-w
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Iodine-125 (I-125) radioactive seed implantation is used for the local treatment of hepatocellular carcinoma (HCC), but the molecular mechanisms regulating its anticancer effects remain incompletely understood. In this study, we report that hsa_circ_0000647 (circSEC11A) is highly expressed after I-125 treatment in HCC cell lines and tissues and is a key regulator of I-125-induced anticancer effects. CircSEC11A acts as a competing endogenous RNA (ceRNA) to sponge miR-3529-3p, promoting the expression of zinc fingers and homeoboxes 2 (ZHX2) and enhancing I-125-induced anticancer effects. Dual-luciferase reporter assay, RNA pull-down, RNA immunoprecipitation, and fluorescence in situ hybridization were thereafter performed to verify the interaction among the molecules. Anticancer effects were detected using CCK-8, flow cytometry, TUNEL, EdU, transwell, and wound healing assays. Furthermore, ZHX2 transcriptionally inhibits GADD34, a negative regulator of endoplasmic reticulum stress (ERS), to enhance I-125- induced anticancer effects in vivo and in vitro. In conclusion, we characterized circSEC11A as a novel regulator of I-125-induced anticancer effects in HCC via miR-3529-3p/ZHX2/GADD34 axis-mediated ERS. Thus, circSEC11A may act as a potential therapeutic target for I-125 implantation in the clinic.