Semina: Ciências Agrárias (Nov 2020)

Evaluation of runs of homozygosity and genomic inbreeding in Holstein cattle from Colombia

  • Maria Fernanda Betancur Zambrano,
  • Juan Carlos Rincón Flórez,
  • Ana Cristina Herrera Rios,
  • Carlos Eugenio Solarte Portilla,
  • Gabriel de Jesús Bedoya Berrio

DOI
https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3397
Journal volume & issue
Vol. 41, no. 6Supl2

Abstract

Read online

Traditional selection programs for dairy cattle, based on quantitative principles, have worked well and allowed strong selection processes in the world over many decades. The objectives of this work were to estimate linkage disequilibrium (LD) levels at varying SNPs densities, to evaluate the effective population size of Holstein cattle, to characterize runs of homozygosity (ROH) distribution through Holstein cattle from Nariño and, to estimate and compare inbreeding coefficient (F) based on genomic markers information, runs of homozygosity (FROH), genomic relationship matrix (FGRM), and excess of homozygous (FSNP). After quality control, the dataset used was composed of 606 Holstein animals and 22200 SNP markers. PLINK program was used to identify LD, Ne, ROH segment and FROH and FSNP, FGRM was calculated with BLUPF90 family of programs. The average of r2 in all chromosomes was 0.011, the highest r2 was found in BTA3 (0.0323), and the lowest in BTA12 (0.0039). 533 ROH segments were identified in 319 animals; findings obtained in this study suggest that on average 0,28% of Holstein genome is autozygous. Total length of ROH was composed mostly of small segments (ROH1-4Mb and ROH4-8Mb). These segments accounted for approximately 96%, while larger ROH (ROH>8Mb) were 3.37% of all ROH detected. Inbreeding averages FROH, FSNP and FGRM methodologies were 0.28%, 3.11% and 3.36% respectively. The Pearson’s correlation among these different F values was: 0.49 (FROH-FSNP), 0.25 (FROH-FGRM), 0.22 (FSNP-FGRM). The distribution of ROH shared regions identified on 19 autosome chromosomes, cover a relevant number of genes inside these ROH. Our result evidenced lowest LD extension levels compared with other Holstein populations; inbreeding results suggest that FGRM and FSNP may be useful estimators of individual autozygosity in Holstein from Colombia. Genes related with production and reproduction were found, but the most important are the two that may be related to adaptation to Colombian high tropics. This work is a pioneer and be the starting point for programs of genetic improvement and genomic population studies in the country and mainly in high tropic areas where the dairy breeds have an important production.

Keywords