Clean Technologies (Mar 2021)
Multiphysics Design of Pet-Coke Burner and Hydrogen Production by Applying Methane Steam Reforming System
Abstract
Pet-coke (petroleum coke) is identified as a carbon-rich and black-colored solid. Despite the environmental risks posed by the exploitation of pet-coke, it is mostly applied as a boiling and combusting fuel in power generation, and cement production plants. It is considered as a promising replacement for coal power plants because of its higher heating value, carbon content, and low ash. A computational fluid dynamics (CFD) computational model of methane steam reforming was developed in this research. The hydrogen production system is composed from a pet-coke burner and a catalyst bed reactor. The heat released, produced by the pet-coke combustion, was utilized for convective and radiative heating of the catalyst bed for maintaining the steam reforming reaction of methane into hydrogen and carbon monoxide. This computational algorithm is composed of three steps—simulation of pet-coke combustion by using fire dynamics simulator (FDS) software coupled with thermal structural analysis of the burner lining and a multiphysics computation of the methane steam reforming (MSR) process taking place inside the catalyst bed. The structural analysis of the burner lining was carried out by coupling the solutions of heat conduction equation, Darcy porous media steam flow equation, and structural mechanics equation. In order to validate the gaseous temperature and carbon monoxide mole fraction obtained by FDS calculation, a comparison was carried out with the literature results. The maximal temperature obtained from the combustion simulation was about 1440 °C. The calculated temperature is similar to the temperature reported, which is also close to 1400 °C. The maximal carbon dioxide mole fraction reading was 15.0%. COMSOL multi-physics software solves simultaneously the catalyst media fluid flow, heat, and mass with chemical reaction kinetics transport equations of the methane steam reforming catalyst bed reactor. The methane conversion is about 27%. The steam and the methane decay along the catalyst bed reactor at the same slope. Similar values have been reported in the literature for MSR temperature of 510 °C. The hydrogen mass fraction was increased by 98.4%.
Keywords