Frontiers in Pharmacology (May 2022)

Integrating Network Pharmacology and Metabolomics to Elucidate the Mechanism of Action of Huang Qin Decoction for Treament of Diabetic Liver Injury

  • Xiaomin Xu,
  • Cheng Fang,
  • Yu Wang,
  • Fang Lu,
  • Shumin Liu

DOI
https://doi.org/10.3389/fphar.2022.899043
Journal volume & issue
Vol. 13

Abstract

Read online

Huang Qin Decoction (HQD), is used for the treatment of diabetic liver injury (DLI) and in this study, its mechanisms were evaluated by metabonomics and system pharmacology. To study the anti-DLI effects of HQD. The 48 male db/db mice were fed adaptively for one week, and a random blood glucose test was performed twice. The db/db mice with a blood glucose level of more than 11.1mol/l were separated into four groups: the model group, the active control group, the high-dose HQD group the low-dose HQD group, the control group consisted of db/m mice. Using the UHPLC/Q-TOF-MS metabolomics approach, 18 metabolites were found to be profoundly altered in the model group, and the levels of these biomarkers were significantly recovered after treatment with HQD. 8 signaling pathways related to HQD, including the Sphingolipid metabolism, Taurine and hypotaurine metabolism, Phenylalanine metabolism, Glutathione metabolism and Glycerophospholipid metabolism, etc. were explored. In addition, the system pharmacology paradigm revealed that HQD contains 141 active ingredients and is related to 265 genes, and 1404 disease genes are related to DLI. The construction of the HQD composition-target-DLI network identified a total of 161 intersection genes. We identified 10 key genes, which is partially compatible with the results of metabolomics. The integrated approach metabolomics and network pharmacology revealed that additional detailed investigation focused on five major targets, including CAT, PTGS2, MAPK3, AKT1, and MAPK8, and their essential metabolites (sphinganine, sphingosine, Glutahione, Oxidized gutahione, Dihydrolipoamide) and pathway (glycerol phospholipid metabolism and tryptophan metabolism). The significant affinity of the primary target for the HQD was confirmed by molecular docking. The results demonstrate that the combination of metabolomics and network pharmacology could be used to reflect the effects of HQD on the biological network and metabolic state of DLI and to evaluate the drug efficacy of HQD and its related mechanisms.

Keywords