Animals (Sep 2022)

Propagation of <i>Babesia bigemina</i> in Rabbit Model and Evaluation of Its Attenuation in Cross-Bred Calves

  • Naimat Ullah,
  • Kamran Ashraf,
  • Abdul Rehman,
  • Muhammad Suleman,
  • Muhammad Imran Rashid

DOI
https://doi.org/10.3390/ani12172287
Journal volume & issue
Vol. 12, no. 17
p. 2287

Abstract

Read online

Bovine babesiosis (BB) is a vector-borne disease (VBD) that affects cattle in tropical and subtropical areas, caused by the haemoprotozoa Babesia bovis and Babesia bigemina. It is transmitted by tick bites belonging to the genus Rhipicephalus and is clinically characterized by high fever, depression, anorexia, decreased milk and meat production, haemoglobinemia, haemoglobinuria, jaundice, and pregnancy loss. In this study, the propagation of B. bigemina was evaluated by intraperitoneally inoculating 3 × 106 red blood cells infected with B. bigemina into rabbits. The study showed that variations in rabbit body temperatures are related to induced bovine babesiosis. A significant increase in temperature (39.20 ± 0.23 °C) was observed from day 4 onwards, with the maximum temperature (40.80 ± 1.01 °C) on day 9 post-inoculation. This study included susceptible cross-bred calves for in vivo attenuation, and they were compared with an infected group. The calves in the infected group showed a significant increase in temperature (38.79 ± 0.03 °C) from day 3 onwards and a maximum temperature (41.3 ± 0.17 °C) on day 11. Inoculated calves showed a gradual rise in temperature post-inoculation, but the difference was not significant. Inoculated calves did not show parasitaemia, whereas 32% of infected calves displayed parasitaemia. As compared to inoculated calves post-inoculation, packed cell volume (PCV) decreased (16.36 ± 1.30) for infected calves. However, there were statistically significant differences (p ≤ 0.05) in temperatures, parasitaemia, and PCV in both inoculated and infected calves. The current study aimed to attenuate B. bigemina in rabbit models and evaluate the pathogenic potential of this organism in naive calves. In conclusion, B. bigemina proliferation was attenuated in rabbits. The rabbit model can be used to study B. bigemina in vivo in order to reduce its pathogenicity.

Keywords