Journal of Advanced Transportation (Jan 2020)
Signal Timing Optimization Model for Intersections in Traffic Incidents
Abstract
The intersection control and management can alleviate the traffic congestion caused by traffic incidents. Therefore, it becomes essential to develop a signal optimization method for intersections influenced by traffic incidents, which will be beneficial to prevent congestion spreading. In this paper, the proposed model is capable of maximizing the intersection throughput by comprehensively considering the queue length as the penalty value. The headway of leaving vehicles is assumed to follow the Cowan’s M3 headway distribution, where formulas for queue length can be derived based on gap acceptance theory. To satisfy the conditions for efficiently identifying feasible solutions in a short time, a heuristic algorithm (simulated annealing algorithm) is employed to solve the model. The numerical results can validate that the proposed method can solve the problem more efficiently and alleviate the intersection congestion caused by the incidents more desirably. When the incident occurs away from the intersection stop line, the impacts on intersection throughput will be gradually weakened. The proposed method is capable of improving the signalized intersection throughput while preventing the congestion from spreading to the upstream intersection.