International Journal of Multiphysics (Dec 2007)

Aero-acoustics in a tangential blower: validation of the CFD flow distribution using advanced PIV techniques

  • Jean-Yves Noël,
  • Mark Farall,
  • Luca Casarsa

DOI
https://doi.org/10.1260/175095407783419325
Journal volume & issue
Vol. 1, no. 4

Abstract

Read online

Noise reduction is of increasing importance in the community. Consequently, the development of aero-acoustics is gaining special focus within industry. Computational Aero-Acoustics (CAA), the coupling of Computational Fluid Dynamics (CFD) and Computational Acoustics (CA), is being used in the design and assessment of a range of products from HVAC ducts to domestic appliances. The process for carrying out an Aero-Acoustic simulation begins with the solution of the transient flow dynamics in order to compute accurately the pressure fluctuations at a number of points in the computational domain. These fluctuations are passed to the acoustic code to propagate the acoustic waves through the system and determine its acoustic signature. To minimize errors in the acoustic propagation analysis it is thus essential that accurate predictions of the noise sources be obtained. This paper concentrates on the CFD part of the aero-acoustic simulation. The case considered has been taken from the European project DESTINY:3 and comprises a tangential blower located inside a complex duct system. Air is drawn into the fan through two inlets and exits through a single duct. The computational methodology and flow field predictions are presented and compared to experimental PIV data. The numerical predictions were found to be in good agreement with the experimental data, reproducing the asymmetries in the flow field.