Leida xuebao (Dec 2021)
Azimuth Unambiguity Suppression for Low-oversampled Staggered SAR Images
Abstract
Low-oversampled staggered synthetic aperture radar can achieve continuously observed high-resolution and wide-swath imaging by utilizing the variable pulse repetition interval to distribute blind ranges. Moreover, adopting a low oversampling ratio can reduce the data storage requirements, contributing to its research significance. However, non-uniform sampling, echo data loss, and non-ideal Azimuth Antenna Pattern (AAP) cause severe azimuth ambiguities in a directly focused image. This study proposes a compressive sensing-based method with better ambiguity removal performance and higher efficiency compared to existing methods. First, an Innovative Frequency-Domain Model (IFDM) is constructed, which accurately describes the non-uniform sampling, echo data loss, and coupled range cell migration. Based on the IFDM, an optimization problem is constructed and solved by the two-dimensional fast iterative shrinkage thresholding algorithm to remove the ambiguity caused by non-uniform sampling and echo data loss. Subsequently, selective filtering is used to suppress the ambiguity caused by the AAP. The experiments demonstrate that the proposed method can more effectively and efficiently suppress the azimuth ambiguities compared to existing methods.
Keywords