Pharmacological Research (Sep 2024)
Tetrandrine activates STING/TBK1/IRF3 pathway to potentiate anti-PD-1 immunotherapy efficacy in non-small cell lung cancer
Abstract
The efficacy of PD-1 therapy in non-small cell lung cancer (NSCLC) patients remains unsatisfactory. Activating the STING pathway is a promising strategy to improve PD-1 inhibitor efficacy. Here, we found tetrandrine (TET), an anti-tumor compound extracted from a medicinal plant commonly used in traditional Chinese medicine, has the ability to inhibit NSCLC tumor growth. Mechanistically, TET induces nuclear DNA damage and increases cytosolic dsDNA, thereby activating the STING/TBK1/IRF3 pathway, which in turn promotes the tumor infiltration of dendritic cells (DCs), macrophages, as well as CD8+ T cells in mice. In vivo imaging dynamically monitored the increased activity of the STING pathway after TET treatment and predicted the activation of the tumor immune microenvironment. We further revealed that the combination of TET with αPD-1 monoclonal antibody (αPD-1 mAb) yields significant anti-cancer effects by promoting CD8+ T cell infiltration and enhancing its cell-killing effect, which in turn reduced the growth of tumors and prolonged survival of NSCLC mice. Therefore, TET effectively eliminates NSCLC cells and enhances immunotherapy efficacy through the activation of the STING pathway, and combining TET with anti-PD-1 immunotherapy deserves further exploration for applications.