Journal of Lipid Research (Jun 1990)

Nonuniform radiolabeling of VLDL apolipoprotein B: implications for the analysis of studies of the kinetics of the metabolism of lipoproteins containing apolipoprotein B.

  • R Ramakrishnan,
  • Y Arad,
  • S Wong,
  • HN Ginsberg

Journal volume & issue
Vol. 31, no. 6
pp. 1031 – 1042

Abstract

Read online

Radiolabeling of whole lipoproteins or individual apolipoproteins has been an essential tool for the determination of the kinetics of apolipoprotein metabolism in vivo. Mathematical analysis of specific radioactivity (SA) or total radioactivity data has demonstrated the existence of significant complexity in the plasma decay curves of several apolipoproteins. Results obtained during development of methods to study the metabolism of apolipoprotein B (apoB) in very low density lipoprotein (VLDL) subclasses isolated according to flotation (Sf) rates from whole radiolabeled (d less than 1.006 g/ml) VLDL suggested nonuniform radiolabeling of apoB in the three Sf subclasses being studied. We therefore determined apoB SA in VLDL Sf subclasses in ten hypertriglyceridemic and five normal subjects. After radioiodination of apoB in whole VLDL, different apoB SA were found in Sf 400-100, Sf 100-60, and Sf 60-20. The pattern of labeling was quite variable among subjects. On average, apoB SA in the VLDL tracer was greatest in Sf 400-100, and least in Sf 60-20. Nonuniform labeling could also be demonstrated in five studies in which samples were obtained 3 min after intravenous injection of the tracer into subjects with a wide range of plasma triglycerides. Nonuniform labeling of apoB in whole VLDL was also demonstrated in two of the subjects by isolating subclasses of their VLDL that did not bind to an anti-apolipoprotein E immunoaffinity column. These results indicate that the usual assumption of homogeneous labeling of apoB may be erroneous. We have derived a simple mathematical formula to study the consequences of this assumption in estimating kinetic parameters. It is shown that an erroneous assumption of homogeneous tracer labeling may significantly underestimate or overestimate the true production rate, even in a simple two-pool model. Identification of labeling characteristics and incorporation of this information into the mathematical analysis of the plasma radioactivity data can improve the accuracy of the analysis as well as the sensitivity of compartmental models generated by such data.