Boundary Value Problems (Jun 2021)
Upper semicontinuity of pullback attractors for a nonautonomous damped wave equation
Abstract
Abstract In this paper, we study the local uniformly upper semicontinuity of pullback attractors for a strongly damped wave equation. In particular, under some proper assumptions, we prove that the pullback attractor { A ε ( t ) } t ∈ R $\{A_{\varepsilon }(t)\}_{t\in \mathbb{R}}$ of Eq. (1.1) with ε ∈ [ 0 , 1 ] $\varepsilon \in [0,1]$ satisfies lim ε → ε 0 sup t ∈ [ a , b ] dist H 0 1 × L 2 ( A ε ( t ) , A ε 0 ( t ) ) = 0 $\lim_{\varepsilon \to \varepsilon _{0}}\sup_{t\in [a,b]} \operatorname{dist}_{H_{0}^{1}\times L^{2}}(A_{\varepsilon }(t),A_{ \varepsilon _{0}}(t))=0$ for any [ a , b ] ⊂ R $[a,b]\subset \mathbb{R}$ and ε 0 ∈ [ 0 , 1 ] $\varepsilon _{0}\in [0,1]$ .
Keywords