Animal (Apr 2021)

Effect of raw and fermented grape seed on growth performance, antioxidant capacity, and cecal microflora in broiler chickens

  • E. Gungor,
  • A. Altop,
  • G. Erener

Journal volume & issue
Vol. 15, no. 4
p. 100194

Abstract

Read online

Grape seed (GS) is a by-product of the fruit juice and wine industry with the potential to be an alternative to synthetic antioxidants due to its antioxidant activity. Agro-industrial residues can be converted to more effective products by solid-state fermentation. The objective of the study was to investigate the effects of GS and fermented grape seed (FGS) on the growth performance, antioxidant capacity, and cecal microflora in broiler chickens. A total of 128 female broilers were randomly allocated into four treatment groups, each consisting of four replicates of eight birds. Throughout the 42-day feeding period, the birds were fed with soybean-corn based diet (CON), 0.15 g/kg synthetic antioxidant (butylated hydroxyanisole) supplemented diet (AO), 5 g/kg GS supplemented diet (GS), and 5 g/kg FGS supplemented diet (FGS). Dietary GS, FGS, and AO supplementation increased the BW (P < 0.05) and average daily weight gain (ADG, P < 0.05) compared with the CON group in the overall period of 42 days. Dietary FGS also increased the ADG (P < 0.05) in the period of 22–42 days compared with the control group. The pH of the breast meat of the chickens fed GS was higher (P < 0.01) than CON and FGS groups. Dietary FGS and AO decreased the b* value (P < 0.01) of breast meat compared with the CON group. Grape seed had the highest serum glutathione peroxidase (P < 0.05) and catalase (CAT, P < 0.01) levels among the treatment groups. The FGS also increased serum CAT level (P < 0.01) compared with the AO group. Moreover, dietary FGS supplementation increased Lactobacillus spp. (P < 0.05) in the cecum compared with the other treatment groups and decreased Staphylococcus aureus (P < 0.05) compared with the CON and AO groups. The present findings indicate that GS and FGS can be used in broiler diets as alternatives to synthetic antioxidants.

Keywords