Future Foods (Dec 2024)
Improving iron content in sustainable mycoprotein production through seawater fermentation
Abstract
The growing global population and rising protein demand are straining freshwater resources. Fusarium venenatum (Fv) mycoprotein offers a sustainable protein alternative, with environmental efficiency and potential health benefits. However, its low iron content remains a concern, especially for vegetarians and vegans. This study introduces a sustainable approach, employing seawater as a fermentation medium for Fv production. Our analysis reveals that mycoprotein derived from SEA Fv exhibits elevated levels of sodium and calcium, with a notably high iron content (2.2 mg/100 g wet weight). The sodium content, while 3.31 times higher than in non-seawater fermentation, remains within recommended daily intake parameters. No plasticizers or heavy metals were detected in the SEA Fv cell body, minimizing long-term toxicity risks from seawater use. A unique metabolite, dihydroorotic acid, was identified from an in-house library of 774 metabolites, serving as an internal biomarker for seawater-based production methods. An acute safety study condensing 600 g of SEA Fv to simulate high mycoprotein digestion showed no effects on key physical behaviors or major organs, including the heart and lungs. This positions the product as a viable protein alternative with enhanced iron content, highlighting seawater-based fermentation as a sustainable method for future food production and industry progress.