NeuroImage (Nov 2022)

Separate neural subsystems support goal-directed speech listening

  • Liu-Fang Zhou,
  • Dan Zhao,
  • Xuan Cui,
  • Bingbing Guo,
  • Fangwei Zhu,
  • Chunliang Feng,
  • Jinhui Wang,
  • Ming Meng

Journal volume & issue
Vol. 263
p. 119613

Abstract

Read online

How do humans excel at tracking the narrative of a particular speaker with a distracting noisy background? This feat places great demands on the collaboration between speech processing and goal-related regulatory functions. Here, we propose that separate subsystems with different cross-task dynamic activity properties and distinct functional purposes support goal-directed speech listening. We adopted a naturalistic dichotic speech listening paradigm in which listeners were instructed to attend to only one narrative from two competing inputs. Using functional magnetic resonance imaging with inter- and intra-subject correlation techniques, we discovered a dissociation in response consistency in temporal, parietal and frontal brain areas as the task demand varied. Specifically, some areas in the bilateral temporal cortex (SomMotB_Aud and TempPar) and lateral prefrontal cortex (DefaultB_PFCl and ContA_PFCl) always showed consistent activation across subjects and across scan runs, regardless of the task demand. In contrast, some areas in the parietal cortex (DefaultA_pCunPCC and ContC_pCun) responded reliably only when the task goal remained the same. These results suggested two dissociated functional neural networks that were independently validated by performing a data-driven clustering analysis of voxelwise functional connectivity patterns. A subsequent meta-analysis revealed distinct functional profiles for these two brain correlation maps. The different-task correlation map was strongly associated with language-related processes (e.g., listening, speech and sentences), whereas the same-task versus different-task correlation map was linked to self-referencing functions (e.g., default mode, theory of mind and autobiographical topics). Altogether, the three-pronged findings revealed two anatomically and functionally dissociated subsystems supporting goal-directed speech listening.

Keywords