Journal of Heat and Mass Transfer Research (May 2025)
Effect of Activation Energy on Magnetized Couple Stress Fluid over an Inclined Stretching Permeable Cylinder
Abstract
Activation energy is of considerable significance in diverse applications such as chemical kinetics, catalyst development, enzymes, semiconductors, and systems sensitive to temperature, such as chemical reactors and engines. The objective of this research is to investigate the influence of activation energy on a magnetized couple stress fluid over an inclined stretching permeable cylinder in a non-Darcy porous medium. The effects of cross-diffusion and stratified mixed convection are also considered in fluid model. The boundary layer equations, which describe the flow, have been converted into dimensionless form through suitable transformable variables. Subsequently, these transformed equations are solved using fourth order Runge-Kutta mechanism along with the shooting technique. The outcomes comprise visual depictions and comprehensive explanations demonstrating the influence of relevant variables on thermal, concentration, and velocity fields. Observations reveal that the concentration profile is directly influenced by the Forchheimer number and activation energy parameter, whereas both temperature and concentration fields decrease with elevated thermal and solutal stratification parameters. Additionally, numerical outcomes for the skin-friction coefficient, Nusselt number, and Sherwood number are presented in tabular form.
Keywords