Biomedicines (Nov 2023)

Kidney Renin Release under Hypoxia and Its Potential Link with Nitric Oxide: A Narrative Review

  • Weiwei Kong,
  • Yixin Liao,
  • Liang Zhao,
  • Nathan Hall,
  • Hua Zhou,
  • Ruisheng Liu,
  • Pontus B. Persson,
  • Enyin Lai

DOI
https://doi.org/10.3390/biomedicines11112984
Journal volume & issue
Vol. 11, no. 11
p. 2984

Abstract

Read online

The renin–angiotensin system (RAS) and hypoxia have a complex interaction: RAS is activated under hypoxia and activated RAS aggravates hypoxia in reverse. Renin is an aspartyl protease that catalyzes the first step of RAS and tightly regulates RAS activation. Here, we outline kidney renin expression and release under hypoxia and discuss the putative mechanisms involved. It is important that renin generally increases in response to acute hypoxemic hypoxia and intermittent hypoxemic hypoxia, but not under chronic hypoxemic hypoxia. The increase in renin activity can also be observed in anemic hypoxia and carbon monoxide-induced histotoxic hypoxia. The increased renin is contributed to by juxtaglomerular cells and the recruitment of renin lineage cells. Potential mechanisms regulating hypoxic renin expression involve hypoxia-inducible factor signaling, natriuretic peptides, nitric oxide, and Notch signaling-induced renin transcription.

Keywords