Nanomaterials (Apr 2022)

Magnetic Levitation of Personalized Nanoparticle–Protein Corona as an Effective Tool for Cancer Detection

  • Erica Quagliarini,
  • Luca Digiacomo,
  • Damiano Caputo,
  • Alessandro Coppola,
  • Heinz Amenitsch,
  • Giulio Caracciolo,
  • Daniela Pozzi

DOI
https://doi.org/10.3390/nano12091397
Journal volume & issue
Vol. 12, no. 9
p. 1397

Abstract

Read online

Unprecedented opportunities for early stage cancer detection have recently emerged from the characterization of the personalized protein corona (PC), i.e., the protein cloud that surrounds nanoparticles (NPs) upon exposure to a patients’ bodily fluids. Most of these methods require “direct characterization” of the PC., i.e., they necessitate protein isolation, identification, and quantification. Each of these steps can introduce bias and affect reproducibility and inter-laboratory consistency of experimental data. To fulfill this gap, here we develop a nanoparticle-enabled blood (NEB) test based on the indirect characterization of the personalized PC by magnetic levitation (MagLev). The MagLev NEB test works by analyzing the levitation profiles of PC-coated graphene oxide (GO) NPs that migrate along a magnetic field gradient in a paramagnetic medium. For the test validation, we employed human plasma samples from 15 healthy individuals and 30 oncological patients affected by four cancer types, namely breast cancer, prostate cancer, colorectal cancer, and pancreatic ductal adenocarcinoma (PDAC). Over the last 15 years prostate cancer, colorectal cancer, and PDAC have continuously been the second, third, and fourth leading sites of cancer-related deaths in men, while breast cancer, colorectal cancer, and PDAC are the second, third and fourth leading sites for women. This proof-of-concept investigation shows that the sensitivity and specificity of the MagLev NEB test depend on the cancer type, with the global classification accuracy ranging from 70% for prostate cancer to an impressive 93.3% for PDAC. We also discuss how this tool could benefit from several tunable parameters (e.g., the intensity of magnetic field gradient, NP type, exposure conditions, etc.) that can be modulated to optimize the detection of different cancer types with high sensitivity and specificity.

Keywords