EPJ Web of Conferences (Jan 2021)

LOW TEMPERATURE EFFECTS ON PWR FUEL ASSEMBLY CRITICALITY CALCULATIONS

  • Behler Matthias,
  • Hannstein Volker,
  • Sommer Fabian

DOI
https://doi.org/10.1051/epjconf/202124717008
Journal volume & issue
Vol. 247
p. 17008

Abstract

Read online

One of the parameters affecting the neutron multiplication factor keff of a system containing fissile material is the system temperature. Therefore, the effect of temperature on criticality safety analyses is an area of international interest. In this context, the Working Party on Nuclear Criticality Safety (WPNCS) of the OECD Nuclear Energy Agency (NEA) formed a subgroup to define and execute a code-to-code comparison benchmark to investigate the effect of temperature on keff for PWR fuel assemblies. Two configurations of a generic water-moderated PWR fuel assembly were analysed at different temperatures between 233 K and 588 K, and with different assembly burnups. Based on this benchmark, GRS performed an additional study to investigate the impact of the moderator densities, the neutron reaction cross sections and the thermal scattering data on keff separately. The benchmark results show the expected decrease of keff with temperature and a considerable jump in keff at the phase transition of the moderator. The additional investigation demonstrates that the jump in keff is mainly caused by the change of the moderator density due to the phase transition. The change of the thermal scattering data due to the phase transitions leads to a similar but smaller jump in keff. Furthermore, the actual impact of the different parameters on keff depend strongly on the considered fuel assembly configuration.

Keywords