Atmosphere (May 2021)

Revisiting Forest Effects on Winter Air Temperature and Wind Speed—New Open Data and Transfer Functions

  • Michael Klein,
  • Jakob Garvelmann,
  • Kristian Förster

DOI
https://doi.org/10.3390/atmos12060710
Journal volume & issue
Vol. 12, no. 6
p. 710

Abstract

Read online

The diurnal cycle of both air temperature and wind speed is characterized by considerable differences, when comparing open site conditions to forests. In the course of this article, a new two-hourly, open-source dataset, covering a high spatial and temporal variability, is presented and analyzed. It contains air temperature measurements (128 station pairs (open/forest); six winter seasons; six study sites), wind speed measurements (64 station pairs; three winter seasons, four study sites) and related metadata in central Europe. Daily cycles of air temperature and wind speed, as well as further dependencies of the effective Leaf Area Index (effective LAI), the exposure in the context of forest effects, and the distance to the forest edge, are illustrated in this paper. The forest effects on air temperature can be seen particularly with increasing canopy density, in southern exposures, and in the late winter season, while wind speed depends on multiple factors such as effective LAI or the distance to the forest edge. New transfer functions, developed using linear and non-linear regression analysis, in a leave-one-out cross-validation, improve certain efficiency criteria (NSME; r2; RMSE; MAE) compared to existing transfer functions. The dataset enables multiple purposes and capabilities due to its diversity and sample size.

Keywords