AIMS Energy (Jun 2022)
Cost optimization and optimal sizing of standalone biomass/diesel generator/wind turbine/solar microgrid system
Abstract
Renewable energy has grown in popularity in recent years as a solution to combat the effects of pollution on the environment. The main purpose of this research is to design a microgrid system in Lakshadweep Island to determine the cost and dependability of a solar photovoltaic system that is combined with biomass, wind energy and diesel generator. Two types of hybrid systems like solar/biomass generator/wind turbine and Solar/diesel generator/biomass are investigated to get an optimal solution using HOMER Pro software. The hybrid microgrid system is optimized with low cost of energy (COE) and less environmental pollution. The reliability indice like unmet load is determined for each case to access the performance of the system. The influence of different Weibull shape parameter in solar/biomass generator/wind turbine hybrid system with sensitive variation of solar irradiation and wind speed are discussed. The scheduling of diesel generator in solar/diesel generator/biomass generator with various scenarios are analyzed based on minimum net present cost. The optimization results shows that the solar/diesel generator/biomass hybrid system has low net present cost of 432513 $ and cost of energy of 0.215 $/kWh as compared to solar/biomass/wind turbine for the selected site location. The proposed solar/diesel generator/biomass system produces emission of 7506 kg/yr. The emission produced in Lakshadweep Island using the proposed model is reduced since this Island currently produces electricity mainly with diesel generators. The optimal sizing of various components in microgrid system is performed to get the optimal solution.
Keywords