Atmospheric Chemistry and Physics (Jul 2015)
Particle size-resolved source apportionment of primary and secondary organic tracer compounds at urban and rural locations in Spain
Abstract
Atmospheric particulate matter (PM) was fractionated in six aerodynamic sizes, > 7.2, 7.2–3, 3–1.5, 1.5–1, 1–0.5 and PM > 0.5 μm). Thus, markers of photochemically synthesized organic compounds or combustion sources, either biomass burning or traffic emissions, were predominantly observed in the fraction Important seasonal differences were observed at the rural site. In the PM > 0.5 μm fractions the differences involved predominantly soil-sourced compounds in the warm period and mixed combustion sources, photochemical products and vegetation emissions in the cold. Multivariate curve resolution/alternating least squares showed that these organic aerosols essentially originated from six source components. Four of them reflected primary emissions related to either natural products, e.g., vegetation emissions and upwhirled soil dust, or anthropogenic contributions, e.g., combustion products and compounds related to urban lifestyle activities like vehicular exhaust and tobacco smoking. Two secondary organic aerosol components were identified. They accumulated in the smallest ( 0.5 μm) and involved strong or mild photochemical transformations of vegetation precursor molecules, respectively. Toxicologically relevant information was also disclosed with the present approach. Thus, the strong predominance of biomass burning residues at the rural site during the cold period involved atmospheric concentrations of polycyclic aromatic hydrocarbons that were 3 times higher than at the urban sites and benzo[a]pyrene concentrations above legal recommendations.