Remote Sensing (Oct 2022)
Raindrop Size Distribution Prediction by an Improved Long Short-Term Memory Network
Abstract
The observation of and research on raindrop size distribution (DSD) is important for mastering and understanding the mutual restriction relationship between cloud dynamics and cloud microphysics in a process of precipitation; it also plays an irreplaceable role in many fields, such as radar meteorology, weather modification, boundary layer land surface processes, aerosols, etc. Using more than 1.7 million minutes of raindrop data observed with 17 laser disdrometers at 17 stations in Anhui Province, China, from 7 August 2009 to 30 April 2020, a DSD training dataset was constructed. Furthermore, the data are fitted to a normalized Gamma function and used to obtain its three parameters, i.e., the normalized intercept Nw, the mass weighted average diameter Dm, and the shape factor μ. Based on the long short-term memory network (LSTM), a DSD Gamma distribution prediction network (DSDnet) was designed. In the process of modeling based on DSDnet, a self-defined loss function (SLF) was proposed in order to improve the DSD prediction by increasing the weight values in the poor fitting regions according to the common mean square error loss function (MLF). By means of the training dataset, a DSDnet-based model was trained to realize the prediction of Nw, Dm, and μ minute-to-minute over the course of 30 min, and then was evaluated by the test dataset according to three indicators, namely, mean relative error (MRE), mean absolute error (MAE), and correlation coefficient (CC). The CC of lgNw, Dm, and μ can reach 0.93403, 0.90934, and 0.89741 for 12-min predictions, and 0.87559, 0.85261, and 0.84564 for 30-min predictions, respectively, which means that the DSD prediction accuracy within 30 min can basically reach the application level. Furthermore, the 12- and 30-min predictions of 3 precipitation processes were taken as examples to fully demonstrate the application effect of model. The prediction effects of Nw and Dm are better than that of μ, and the stratiform precipitation is better than the convective and convective-stratiform mixed cloud precipitation.
Keywords