E3S Web of Conferences (Jan 2019)

Phosphogypsum recycling into inorganic dyes

  • Shabelskaya Nina,
  • Medvedev Roman,
  • Gaidukova Yuliya,
  • Astachova Marina

DOI
https://doi.org/10.1051/e3sconf/201914001002
Journal volume & issue
Vol. 140
p. 01002

Abstract

Read online

Currently, chemical wastes recycling into valuable secondary products poses a pressing challenge. During phosphoric acid production from apatite raw materials, large-tonnage phosphogypsum wastes are formed, resulting in ecosystem dysfunction. Besides, such wastes occupy significant production areas. Calcium sulfate is the main component of phosphogypsum. The paper addresses the possibility of phosphogypsum reduction to calcium sulfide, which has the capacity for luminescence under UV-light. Charcoal, sucrose, and citric acid were used as reducing agents. The obtained inorganic luminescent dyes were examined using X-ray phase analysis, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). It was found that, in the presence of charcoal, the process is accompanied by an uneven distribution of calcium sulfide over the volume of the system and, as a consequence, an uneven glow of the sample. The use of citric acid and sucrose as reducing agents results in the synthesis of samples with a uniform glow. The efficiency of the calcium sulfate conversion to calcium sulfide is 51–58%. A mechanism of calcium sulfate reduction is proposed. The obtained results can serve as a basis for the development of a technology for the recycling of large-tonnage phosphoric acid production wastes into cheap and much-needed inorganic luminescent dyes.