Plant Methods (Dec 2022)
CropPainter: an effective and precise tool for trait-to-image crop visualization based on generative adversarial networks
Abstract
Abstract Background Virtual plants can simulate the plant growth and development process through computer modeling, which assists in revealing plant growth and development patterns. Virtual plant visualization technology is a core part of virtual plant research. The major limitation of the existing plant growth visualization models is that the produced virtual plants are not realistic and cannot clearly reflect plant color, morphology and texture information. Results This study proposed a novel trait-to-image crop visualization tool named CropPainter, which introduces a generative adversarial network to generate virtual crop images corresponding to the given phenotypic information. CropPainter was first tested for virtual rice panicle generation as an example of virtual crop generation at the organ level. Subsequently, CropPainter was extended for visualizing crop plants (at the plant level), including rice, maize and cotton plants. The tests showed that the virtual crops produced by CropPainter are very realistic and highly consistent with the input phenotypic traits. The codes, datasets and CropPainter visualization software are available online. Conclusion In conclusion, our method provides a completely novel idea for crop visualization and may serve as a tool for virtual crops, which can assist in plant growth and development research.
Keywords