Clinical Epigenetics (Oct 2018)
Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome
Abstract
Abstract Background Adiponectin critically contributes to metabolic homeostasis, especially by insulin-sensitizing action. Gestational diabetes mellitus (GDM) is characterized by insulin resistance leading to materno-fetal hyperglycemia and detrimental birth outcomes. By investigating paired subcutaneous (SAT) and visceral adipose tissue (VAT) as well as blood (cell) samples of GDM-affected (n = 25) vs. matched control (n = 30) mother-child dyads of the prospective “EaCH” cohort study, we addressed whether alterations of adiponectin plasma, mRNA, and DNA methylation levels are associated with GDM and offspring characteristics. Results Hypoadiponectinemia was present in women with GDM, even after adjustment for body mass index (BMI). This was accompanied by significantly decreased mRNA levels in both SAT and VAT (P < 0.05), independent of BMI. Maternal plasma adiponectin showed inverse relations with glucose and homeostatic model assessment of insulin resistance (both P < 0.01). In parallel to reduced mRNA expression in GDM, significant (P < 0.05) yet small alterations in locus-specific DNA methylation were observed in maternal fat (~ 2%) and blood cells (~ 1%). While newborn adiponectin levels were similar between groups, DNA methylation in GDM offspring was variously altered (~ 1–4%; P < 0.05). Conclusions Reduced adiponectin seems to be a pathogenic co-factor in GDM, even independent of BMI, affecting materno-fetal metabolism. While altered maternal DNA methylation patterns appear rather marginally involved, functional, diagnostic, and/or predictive implications of cord blood DNA methylation should be further evaluated.
Keywords