Current Research in Microbial Sciences (Jan 2022)

Histidine kinase two-component response regulators Ssk1, Skn7 and Rim15 differentially control growth, developmental and volatile organic compounds emissions as stress responses in Trichoderma atroviride

  • Valter Cruz-Magalhães,
  • Maria Fernanda Nieto-Jacobo,
  • Michael Rostás,
  • Jesus Francisco Echaide-Aquino,
  • Edgardo Ulises Esquivel-Naranjo,
  • Alison Stewart,
  • Leandro L. Loguercio,
  • Artemio Mendoza-Mendoza

Journal volume & issue
Vol. 3
p. 100139

Abstract

Read online

The Skn7, Ssk1 and Rim15 proteins are response regulators involved in osmotic, oxidative and nutritional stress in fungi. In order to verify the involvement of these genes in Trichoderma atroviride IMI206040’s growth, conidiation, direct antagonism against plant pathogens (Rhizoctonia solani and Sclerotinia sclerotiorum), production of volatile organic compounds (VOCs) with fungistatic effect, and interaction with plants (growth promotion), single mutants were generated, and the phenotypic patterns were analysed in comparison to the wild-type (wt) strain. The mutants were submitted to osmotic, oxidative, membrane and cell wall stress conditions in vitro. The Δskn7 and Δrim15 mutants did not show either significant differences at morphological level, or marked decreases in mycelial growth and conidiation in relation to wt, whereas Δssk1 had altered phenotypes in most conditions tested. The plant-growth promotion of Arabidopsis thaliana seedlings induced by VOCs was not quantitatively modified by any of the mutants in relation to the wt strain, although possible differences in secondary root hairs was noticed for Δrim15. The fungistatic activity was significantly altered for Δssk1 and Δrim15. Overall, the Δssk1 strain showed remarkable morphological differences, with decrease in mycelial growth and conidiation, being also affected in the antagonistic capacity against plant pathogens. The impacts demonstrated by the deletion of ssk1 suggest this gene has a relevant participation in the signalling response to different stresses in T. atroviride and in the interactive metabolism with phytopathogens and plants. On the other hand, unlike other fungal models, Skn7 did not appear to have a critical participation in the above-mentioned processes; Rim15 seemed to confirm its involvement in modulating cellular responses to nutritional status, although with a possible cross-talk with other cellular processes. Our results suggest that Ssk1 likely plays a key regulatory role, not only in basic metabolisms of T. atroviride, but also in biocontrol-related characteristics.

Keywords