Scientific Reports (Aug 2017)

The 3-D structure of the Somma-Vesuvius volcanic complex (Italy) inferred from new and historic gravimetric data

  • Niklas Linde,
  • Tullio Ricci,
  • Ludovic Baron,
  • Alexis Shakas,
  • Giovanna Berrino

DOI
https://doi.org/10.1038/s41598-017-07496-y
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Existing 3-D density models of the Somma-Vesuvius volcanic complex (SVVC), Italy, largely disagree. Despite the scientific and socioeconomic importance of Vesuvius, there is no reliable 3-D density model of the SVVC. A considerable uncertainty prevails concerning the presence (or absence) of a dense body underlying the Vesuvius crater (1944 eruption) that is implied from extensive seismic investigations. We have acquired relative gravity measurements at 297 stations, including measurements in difficult-to-access areas (e.g., the first-ever measurements in the crater). In agreement with seismic investigations, the simultaneous inversion of these and historic data resolves a high-density body that extends from the surface of the Vesuvius crater down to depths that exceed 2 km. A 1.5-km radius horseshoe-shaped dense feature (open in the southwestern sector) enforces the existing model of groundwater circulation within the SVVC. Based on its volcano-tectonic evolution, we interpret volcanic structures that have never been imaged before.